This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Synthesis and characterization of O,O'-dialkyl and alkylene dithiophosphates of thorium(IV) and their adducts with nitrogen and phosphorus donors

U. N. Tripathi^a; M. S. Ahmad^a ^a School of Studies in Chemistry, Vikram University, Ujjain, India

To cite this Article Tripathi, U. N. and Ahmad, M. S.(2006) 'Synthesis and characterization of O,O'-dialkyl and alkylene dithiophosphates of thorium(IV) and their adducts with nitrogen and phosphorus donors', Journal of Coordination Chemistry, 59: 14, 1583 – 1590

To link to this Article: DOI: 10.1080/00958970600569962 URL: http://dx.doi.org/10.1080/00958970600569962

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and characterization of O,O'-dialkyl and alkylene dithiophosphates of thorium(IV) and their adducts with nitrogen and phosphorus donors

U. N. TRIPATHI* and M. S. AHMAD

School of Studies in Chemistry, Vikram University, Ujjain, 456010, India

(Received 9 July 2005; revised 27 September 2005; in final form 28 September 2005)

Thorium(IV) tetrakis(dithiophosphates), [Th{S₂P(OR)₂}₄] (where R = -CH₂CH₂CH₃ or -C₆H₅) and [Th{S₂PO₂G}₄] [where G = -C(CH₃)₂CH₂CH(CH₃)-, -CH₂C(CH₃)₂CH₂-, -C(CH₃)₂C(CH₃)₂- and -CH₂CH₂CH(CH₃)-] were prepared in methanolic solution of Th(NO₃)₄ \cong 6H₂O and ammonium dithiophosphates. Adducts of the type [Th{S₂P(OR})₂+ \cong nL] and [Th{S₂PO₂G}₄ \cong nL] [where n = 1, L = N₂C₁₀H₈ or N₂C₁₂H₈ and n = 2, L = P(C₆H₅)₃] were prepared by the reaction of thorium(IV) tetrakis(dithiophosphates) and nitrogen or phosphorus donors in benzene. These newly synthesised derivatives have been characterized by elemental analyses, molecular weights, IR, ¹H and ³¹P NMR spectral measurements. Coordination numbers of eight and ten are suggested for thorium(IV) in these derivatives.

Keywords: Thorium; Dithiophosphate; Triphenylphosphine

1. Introduction

Compared to well developed chemistry of sulfur-bonded derivatives of transition metals, with their fascinating modes of bonding [1–3] and increasing applications in industry [4] and agriculture [5], much less attention has been paid to lanthanides with such ligands. Initially it was thought that soft base (sulfur) and hard acid [thorium(IV)] character of the coordinating atoms [6] would make preparation of such complexes difficult. However, dithiocarbamato derivatives of actinide elements were prepared [7, 8]. Dithiophosphinates of actinide elements along with crystal structures for a few of them have been reported [9]. However O,O'-dialkyl dithiophosphates of lanthanide and actinide elements and their adducts have received little attention [10–12]. O,O'-alkylene dithiophosphates are expected to be less labile and have been explored in our laboratory [13–15]. We have reported O,O'-alkylene dithiophosphates of lanthanum(III) and their adducts with nitrogen and phosphorus donors [16]. Continuing our interest in ligands containing phosphorus and sulfur we report here

^{*}Corresponding author. Email: un_tripathi@yahoo.com

the O,O'-alkylene dithiophosphates of thorium(IV) and their complexation with nitrogen and phosphorus donor.

2. Experimental

Ammonium salts of O,O'-dialkyl and alkylene dithiophosphoric acids were prepared by reaction of dry alcohol or glycol with phosphorus pentasulfide in 4:1 or 2:1 molar ratio, respectively, in dry benzene followed by passing dry ammonia gas into the reaction solution [17]. All other chemicals were of A.R. grade and used without further purification. The complexes described in the present article were synthesized by the following general routes.

2.1. Preparation of $[Th{S_2PO_2C_5H_{10}}_4]$

A methanolic (30 mL) solution of Th(NO₃)₄ \cong 6H₂O (0.8299 g, 1.41 mmol) and [NH₄{S₂PO₂C₅H₁₀}] (1.2206 g, 5.67 mmol) were mixed and refluxed for 8 h. The turbidity created by the by-product (ammonium nitrate) was filtered off and volatiles were removed from the filtrate under reduced pressure. The solid thus obtained was extracted with benzene (20 mL) by stirring overnight. Again the insolubles were filtered off and the desired product was obtained from the filtrate by removal of benzene under vacuum (1.2524 g, 87.0%). The analytical details are listed in table 1. Compounds 1–6 were prepared by this procedure.

2.2. Preparation of $[Th{S_2PO_2C_5H_{10}}_4 \cong N_2C_{10}H_8]$

[Th{S₂PO₂C₅H₁₀}4] (1.0311 g, 1.01 mmol) dissolved in 15 mL benzene was mixed and refluxed with (0.1578 g, 1.01 mmol) N₂C₁₀H₈ in 10 mL benzene for 2 h to ensure complete reaction. The solvent was reduced to 10 mL under reduced pressure and left overnight. White crystals thus deposited were removed and washed with *n*-hexane (1.0938 g, 92.0%). The analytical results are listed in table 2. Compounds numbered 7–12 were isolated by this route.

2.3. Preparation of $[Th{S_2PO_2C_5H_{10}}_4 \cong N_2C_{12}H_8]$

[Th{S₂PO₂C₅H₁₀}₄] (1.0413 g, 1.02 mmol) dissolved in 10 mL benzene was mixed and refluxed with (0.1838 g, 1.02 mmol) N₂C₁₂H₈ in 20 mL benzene for 3 h. Slow evaporation of solvent at room temperature does not yield the product, hence 10 mL *n*-hexane was mixed with it and the mixture was kept at 5°C for 2 h. White crystals thus obtained were removed and washed with *n*-hexane (1.1394 g, 93.0%). The analytical results are presented in table 1. Compounds **13–18** were prepared by this method.

					Analysis Fo	ound (Calcd) (in %)		Mol. Wt.
Compound number	Compound	Yield (%)	m.p. (°C)	Th	s	C	Н	z	round (Calcd)
1	$[Th{S_2P(OCH_2CH_2CH_3)_2}_4]$	06	225	21.29	23.70	26.51	5.18	I	1087.00
				(21.38)	(23.64)	(26.56)	(5.21)		(1085.12)
2	$[Th{S_2P(OC_6H_5)_2}_4]$	92	240	17.11	18.75	42.36	2.93	I	1355.00
				(17.09)	(18.89)	(42.48)	(2.98)		(1357.20)
	$[Th{S_2PO_2C_6H_{12}}_4]$	83	235	21.72	23.63	26.58	4.51	I	1062.00
4	$[Th{S,PO,C,H_{10}}_{4}]$	87	215	(21.34) 22.91	(25.01) 25.07	(20.70) 23.57	(4.20) 3.97	I	(10/.04) 1013.00
				(22.73)	(25.12)	(23.53)	(3.97)		(1020.92)
5	$[Th{S_2PO_2C_6H_{12}}_4]$	85	232	21.50	23.67	27.05	4.67	I	1085.00
				(21.54)	(23.81)	(26.76)	(4.50)		(1077.04)
9	$[Th{S_2PO_2C_4H_8}_4]$	88	221	24.00	26.81	19.95	3.36	Ι	978.00
,		ć		(24.05)	(26.58)	(19.92)	(3.35)		(964.80)
7	$[Th{S_2P(OCH_2CH_2CH_3)_2}_4 \cong N_2C_{10}H_8]$	90	242	18.71	20.64	32.87	5.23	2.23	1238.00
×	$[Th\{S,P(OC,H_{i}),i] \propto N_{i}C_{i,0}H_{i}]$	44	738	(18.69) 15 30	(20.06) 16.96	(32.89) 46.06	3 17	(2.20) 1.86	(1241.32) 1504.00
, ,		-	ì	(15.33)	(16.95)	(46.03)	(3.20)	(1.85)	(1513.40)
6	$[Th{S_2PO_2C_6H_{12}}_4 \cong N_2C_{10}H_8]$	88	248	18.80	20.81	33.09	4.57	2.28	1236.00
				(18.81)	(20.79)	(33.11)	(4.59)	(2.27)	(1233.24)
10	$[Th{S_2PO_2C_5H_{10}}_4 \cong N_2C_{10}H_8]$	92	231	19.72	21.77	30.57	4.08	2.39	1170.00
				(19.71)	(21.79)	(30.61)	(4.12)	(2.38)	(1177.12)
11	$[Th{S_2PO_2C_6H_{12}}_4 \cong N_2C_{10}H_8]$	90	228	18.82	20.78	33.15	4.54	2.29	1235.00
:				(18.81)	(20.79)	(33.11)	(4.59)	(2.27)	(1233.24)
12	$[\text{Th}\{\text{S}_2\text{PO}_2\text{C}_4\text{H}_8\}_4\cong\text{N}_2\text{C}_{10}\text{H}_8]$	95	239	20.74	22.83	27.87	3.63	2.46	1132.00
13	$[Th{S,P(OCH,CH,CH,)}]_{i} \simeq N,C_{i},H_{i}]$	86	245	(60.02) 18.31	20.21	34 12	(00.c) 5 (09	(2.49) 2.23	(1121.00)
)) 	(18.34)	(20.27)	(34.17)	(5.11)	(2.21)	(1265.34)
14	$[Th{S_2P(OC_6H_5)_2}_4 \cong N_2C_{12}H_8]$	88	240	15.02	16.64	46.90	3.18	1.80	1543.00
				(15.09)	(16.68)	(46.87)	(3.15)	(1.83)	(1537.42)
15	$[Th\{S_2PO_2C_6H_{12}\}_4 \cong N_2C_{12}H_8]$	86	247	18.47	20.36	34.28	4.52	2.24	1254.00
				(18.46)	(20.39)	(34.39)	(4.49)	(2.23)	(1257.26)
16	$[Th\{S_2PO_2C_5H_{10}\}_4 \cong N_2C_{12}H_8]$	93	239	19.30	21.38	31.95	4.00	2.29	1198.00
				(19.32)	(66.12)	(66.16)	(4.04)	(2.34)	(1201.14)

Table 1. Synthetic and analytical data for the complexes.

Thorium (IV) complexes

1585

(Continued)

					Analysis Fo	ound (Calcd	() (in %)		Mol. Wt.
Compound number	Compound	Yield (%)	m.p. (°C)	Th	S	С	Н	z	(Calcd)
17	$Th\{S_2PO_2C_6H_{12}\}_4 \cong N_2C_{12}H_8\}$	06	230	18.42	20.43	34.32	4.51	2.25	1265.00
				(18.46)	(20.39)	(34.39)	(4.49)	(2.23)	(1257.26)
18	$[\mathrm{Th}\{\mathrm{S}_{2}\mathrm{PO}_{2}\mathrm{C}_{4}\mathrm{H}_{8}\}_{4}\cong\mathrm{N}_{2}\mathrm{C}_{12}\mathrm{H}_{8}]$	96	223	20.24	22.41	29.38	3.54	2.41	1148.00
				(20.26)	(22.39)	(29.37)	(3.53)	(2.45)	(1145.02)
19	$[Th{S_2P(OCH_2CH_2CH_3)_2}_4 \cong 2P(C_6H_5)_3]$	94	218	14.45	15.90	44.79	5.36	ļ	1612.00
				(14.41)	(15.93)	(44.76)	(5.39)		(1609.72)
20	$[Th{S_2P(OC_6H_5)_2}_4 \cong 2P(C_6H_5)_3]$	94	235	12.34	13.64	53.60	3.72	I	I
				(12.33)	(13.61)	(53.61)	(3.76)		(1881.80)
21	$[Th{S_2PO_2C_6H_{12}}_4 \cong 2P(C_6H_5)_3]$	96	241	14.52	16.00	44.95	4.91	Ι	1610.00
				(14.49)	(16.01)	(44.99)	(4.92)		(1601.64)
22	$[Th{S_2PO_2C_5H_{10}}_4 \cong 2P(C_6H_5)_3]$	76	229	14.97	16.60	43.56	4.59	I	1550.00
				(15.01)	(16.59)	(43.52)	(4.57)		(1545.52)
23	$[Th{S_2PO_2C_6H_{12}}_4 \cong 2P(C_6H_5)_3]$	89	218	14.53	16.24	44.95	4.94	I	1606.00
				(14.49)	(16.01)	(44.99)	(4.92)		(1601.64)
24	$[Th{S_2PO_2C_4H_8}_4 \cong 2P(C_6H_5)_3]$	96	244	15.55	17.23	41.94	4.23	I	1480.00
				(15.58)	(17.22)	(41.93)	(4.20)		(1489.40)

Table 1. Continued.

1586

U. N. Tripathi and M. S. Ahmad

Compound number	ν[(P)–O–C]	ν[P–O–(C)]	Ring Vib.	v[P=S]	ν[P–S]	v[Th–S]
1	1140 (s)	830 (m)	-	680 (s)	520 (s)	360 (m)
2	1180 (s)	1060 (m)	-	690 (s)	540 (s)	380 (m)
3	1020 (s)	870 (w)	930 (m, br)	650 (s)	560 (s)	410 (w)
4	1030 (s)	890 (w)	970 (s)	660 (s)	540 (w)	380 (m)
5	1010 (s)	880 (m)	980 (s, br)	660 (s)	550 (m)	370 (w)
6	1020 (s)	860 (s)	930 (m)	650 (s)	540 (s)	390 (w)
7	1120 (s)	870 (m)	_	690 (s)	570 (m)	360 (m)
8	1160 (s)	840 (m)	-	680 (m)	530 (m)	370 (w)
9	1090 (s)	890 (s)	940 (s)	660 (m)	550 (s)	370 (w)
10	1080 (s)	860 (m)	960 (s)	670 (s)	530 (m)	380 (m)
11	1130 (s)	880 (m)	950 (m, br)	690 (s)	540 (s)	390 (m)
12	1040 (s)	840 (m)	920 (m)	640 (m)	560 (m)	350 (w)
13	1130 (s)	870 (s)	_	660 (s)	570 (s)	400 (m)
14	1170 (s)	910 (m)	_	680 (s)	580 (s)	380 (m)
15	1070 (s)	840 (m)	940 (s)	650 (s)	550 (s)	350 (w)
16	1050 (s)	820 (m)	980 (s)	690 (s)	590 (m)	370 (w)
17	1120 (s)	860 (s)	940 (m)	670 (s)	560 (s)	350 (w)
18	1100 (s)	850 (s)	930 (m)	640 (s)	580 (s)	380 (w)
19	1090 (s)	880 (m)	_	690 (m)	540 (m)	360 (w)
20	1020 (s)	940 (s)	-	660 (s)	560 (m)	390 (w)
21	1040 (s)	870 (m)	960 (m)	630 (s)	530 (m)	350 (m)
22	1100 (s)	840 (m)	990 (s)	660 (s)	580 (s)	400 (m)
23	1070 (s)	890 (m)	940 (m)	680 (m)	570 (m)	410 (w)
24	1060 (s)	860 (m)	950 (m)	640 (m)	590 (s)	370 (w)

Table 2. IR spectral data (cm^{-1}) for complexes.

s = strong; m = medium; w = weak; br = broad.

2.4. Preparation of $[Th\{S_2PO_2C_5H_{10}\}_4 \cong 2P(C_6H_5)_3]$

A benzene (10 mL) solution of $[Th{S_2PO_2C_5H_{10}}_4]$ (0.9597 g, 0.94 mmol) was mixed with benzene (12 mL) solution of $P(C_6H_5)_3$ (0.4931 g, 1.88 mmol) and refluxed for 2.5 h to ensure complete reaction. The solvent was reduced to 10 mL and left for two days at room temperature. The slow evaporation of solvent yielded the white crystalline solid which was separated from the mother liquor and washed with *n*-hexane (1.4092 g, 97.0%). The analytical results are presented in table 1. Compounds **19–24** were prepared by this method.

3. Measurements

IR spectra were recorded in KBr pellets with a Perkin-Elmer Model 577 spectrophotometer. ¹H NMR in CDCl₃ and ³¹P NMR spectra in CH₂Cl₂ solutions were recorded on a Jeol 90Q spectrometer, at 90 MHz using tetramethylsilane and H₃PO₄ standards, respectively. Molecular weights were measured on a Knauer Vapor Pressure Osmometer in CHCl₃ at 45°C. Carbon, hydrogen and nitrogen were estimated by Coleman C.H.N. analyzers.

Sulfur was estimated by the standard method [18]. Thorium was estimated by decomposing the compound by boiling with HNO_3 till dryness. This process was repeated 4–5 times then solid was treated with water followed by oxalic acid solution.

The precipitate was filtered, washed and then ignited in a platinum crucible and weighed as ThO_2 [19].

4. Results and discussion

4.1. Thorium(IV) tetrakis(dithiophosphate)

All these are white solids, soluble in common organic (benzene, dichloromethane, chloroform, etc.) and coordinating (dimethyl sulfoxide, pyridine, tetrahydrofuran, etc.) solvents. The complexes are quite stable but decompose near their respective melting points. The stoichiometry of the compounds is fixed irrespective of the concentration of ligand used. The molecular weight measurement data (table 1) indicate monomeric species in dilute chloroform solution at 45° C.

The IR spectra of the complexes have been recorded in the 4000–200 cm⁻¹ region and important bands are summarized in table 2. The bands observed in the 1180–1010 and 1060–830 cm⁻¹ regions have been assigned to ν [(P)–O–C] and ν [P–O–(C)] stretching vibrations, respectively [13–17, 20–22]. The sharp/medium intensity band in the 980–930 cm⁻¹ region in the O,O'-alkylene dithiophosphates could be due to ring vibration of dioxaphospholane or dioxaphosphorinane [20–22] rings. The ν [P=S] mode at 690–650 cm⁻¹ indicates the bidentate nature of dithiophosphate ligands [13–17]. The band in the 560–520 cm⁻¹ region may be ascribed to ν [P–S] stretching modes [20, 21]. Appearance of a new band (in comparison to free ligand) in the 410–360 cm⁻¹ region indicates the formation of a metal-sulfur bond [23].

¹H NMR spectra of these derivatives have been recorded in CDCl₃ exhibiting the characteristic alkoxy and phenoxy proton signals [17] (table 3). The observed integration ratio corresponds well with the presence of four dithiophosphato groups suggesting that the ratio of metal to ligand is 1:4. The phosphorus atom of the dithiophosphato moiety shows one signal in the 107.00–91.20 ppm region for each compound. These signals are shifted downward (δ 15–19 ppm) as compared to their respective positions in the free ligand spectra, indicating the bidentate nature of the dithiophosphate ligand [17, 24, 25].

4.2. Adducts of thorium(IV) tetrakis(dithiophosphate)

All these complexes were crystallized from benzene solutions after refluxing at different conditions. These derivatives are white crystalline solids soluble in common organic (benzene, dichloromethane, chloroform, etc.) and coordinating (dimethyl sulfoxide, pyridine, tetrahydrofuran, etc.) solvents. These complexes are air and moisture stable at room temperature, but decompose near their respective melting points, which are higher than that of the parent thorium(IV) tetrakis(dithiophosphate). The molecular weight data indicate monomeric species. The IR spectral data recorded in the $4000-200 \,\mathrm{cm}^{-1}$ region are summarized in table 2. These data are quite similar to those obtained from the original parent thorium(IV) tetrakis(dithiophosphate) with only slight shifting of the bands, suggesting again the bidentate nature of the dithiophosphate ligand [13–17].

Compound number	¹ H NMR chemical shift in CDCl ₁₃ (in δ ppm)	³¹ P NMR chemical shift in CH_2Cl_{12} (in δ ppm)
1	0.92, t, 24H (-CH ₃); 1.75, m, 16H (-CH ₂);	100.72 (s)
	5.03, m, 16H (-OCH ₂)	
2	7.15, s, 40H ($-C_6H_5$)	93.42 (s)
3	2.46-1.12, m, $44H$ (-CH ₃ and -CH ₂);	96.40 (s)
4	5.50-4.56, m, 4H (-OCH)	107.00 ()
4	1.04, s, 24H (-CH ₃); 4.22, $d_{1}({}^{3}L_{1})$ 16H, (OCH)	107.00 (s)
5	$4.25, \text{ u} (J = 10 \text{ Hz}), 10 \text{ u} (-0 \text{ CH}_2)$	106 20 (s)
5	$2.46-1.03 \text{ m} 20 \text{ H} (-\text{CH}_2 \text{ and } -\text{CH}_2)^2$	91.20 (s)
0	4.25-3.58 m 12H (-OCH ₂ and -OCH)	91.20 (3)
7	0.96, t. 24H (-CH ₃); $1.78-1.31$, m. 16H (-CH ₂);	104.01 (s)
,	5.86–5.20, m, 16H (–OCH ₂)	10 1101 (0)
	$8.54-7.65$, m, 8H ($-N_2C_{10}H_8$)	
8	6.98, s, 40H $(-C_6H_5)$	93.91 (s)
	8.71-7.65, m, 8H (-N ₂ C ₁₀ H ₈)	
9	2.54–1.57, m, 44H (–CH ₃ and –CH ₂);	96.76 (s)
	5.96–5.15, m, 4H (–OCH)	
	$8.37-7.98$, m, 8H $(-N_2C_{10}H_8)_2$	
10	0.98, s, 24H (–CH ₃); 4.05, d (${}^{3}J = 14$ Hz),	108.00 (s)
	$16 \text{ H} (-\text{OCH}_2); 8.67-8.24, \text{ m}, 8 \text{ H} (-\text{N}_2\text{C}_{10}\text{H}_8)$	
11	1.42, s, 48H (-CH ₃); 7.98, br, 8H (-N ₂ C ₁₀ H ₈)	106.33 (s)
12	2.39-1.00, m, 20H (-CH ₃ and -CH ₂);	91.52 (s)
	4.1/-3.44, m, 12H (-OCH ₂ and -OCH);	
13	$0.49-0.13$, III, $0 \Pi (-N_2 C_{10} \Pi_8)$ $0.05 \pm 24 H (CH) + 1.76 \pm 31 \text{ m} -16 H (CH) + 1.76 \pm 32 \text{ m} + 1.64 \text{ m} +$	105.14 (s)
15	$5.23 \text{ m} 16\text{H} (-\text{OCH}_2)$	105.14 (8)
	9.11-8.34 br 8H $(-N_2C_{12})$	
14	$7.24 + 8.40 \text{H} (-C_{c}H_{c})^{-1}$	94.06 (s)
	$9.23-8.47$, br. $8H(-N_2C_{12}H_8)$	31.00 (3)
15	2.41–1.19, m, 44H (–CH ₃ and –CH ₂);	96.47 (s)
	5.43–4.61, m, 4H (–OCH)	
	9.15-8.37, m, 8H (-N ₂ C ₁₂ H ₈)	
16	1.01, s, 24H (–CH ₃); 4.12, d (${}^{3}J = 15$ Hz),	107.87 (s)
	16 H (-OCH ₂); 9.12-8.63, m, 8H (-N ₂ C ₁₂ H ₈)	
17	1.41, s, 48H (–CH ₃);	105.95 (s)
10	9.23–8.31, m, 8H $(-N_2C_{12}H_8)$	
18	2.42-1.01, m, 20H (-CH ₃ and -CH ₂);	91.84 (s)
	4.20–4.09, m, 12H ($-OCH_2$ and $-OCH$);	
10	9.13-8.54, m, 8H $(-N_2C_{12}H_8)$	104.46 (c)
19	$5.02 \text{ m} 16\text{H} (-C\text{H}_3); 1.73, 111, 10\text{H} (-C\text{H}_2);$	260 (s)
20	$7.12 \times 40H (-C_2H_2); 7.52 \times 30H (-C_2H_2)$	-2.09 (s) 93.08 (s)
20	$7.12, 3, 4011 (C_{6115}), 7.52, 111, 5011 (C_{6115})$	-2.78 (s)
21	2 38–1 24 m 44H (–CH ₂ and –CH ₂).	96 38 (s)
	5.94–5.03. m. 4H (–OCH)	-2.46 (s)
	$7.86-7.36$, m, $30H(-C_6H_5)$	
22	1.05, s, 24H (-CH ₃); 4.13, d (${}^{3}J = 16$ Hz),	107.69 (s)
	16 H (-OCH ₂); 7.42, m, 30H (-C ₆ H ₅)	-2.21 (s)
23	1.43, s, 48H (-CH ₃);	106.11 (s)
	8.16–7.65, m, 30H (–C ₆ H ₅)	-2.32 (s)
24	2.41-1.09, m, 20H (-CH ₃ and -CH ₂);	91.58 (s)
	4.09–4.01, m, 12H (–OCH ₂ and –OCH);	-3.92 (s)
	8.08–7.97, m, 30H (–C ₆ H ₅)	

Table 3. ¹H NMR and ³¹P NMR data (in δ ppm) for complexes.

s = singlet, d = doublet, t = triplet, m = multiplet, br = broad.

¹H NMR spectra of these derivatives have been recorded in CDCl₃ exhibiting the characteristic alkoxy and phenoxy proton signals along with aromatic proton signals from the additional ligands. The observed integration ratios correspond well with the presence of one nitrogen donor and two phosphorus donors in these compounds.

In ³¹P NMR spectra of these derivatives, the phosphorus atom of the dithiophosphato moiety shows one signal in the 108.00–91.52 ppm region for each compound; an additional phosphorus signal in the –2.21 to –3.92 ppm region was recorded in the complexes with the triphenylphosphine. The downfield (δ 15–19 ppm) shifting of the signal due to the dithiophosphato phosphorus atom confirms the bidentate nature of dithiophosphato moieties in these derivatives [17, 24, 25]. On the basis of these studies and available literature, octacoordinated and decacoordinated structures for thorium(IV) tetrakis(dithiophosphate) and their adducts, respectively, may be proposed.

Acknowledgement

UNT is highly grateful to his mentor Prof. R.C. Mehrotra, Department of Chemistry, Rajasthan University, Jaipur for valuable academic guidance.

References

- [1] R.C. Mehrotra, G. Srivastava, B.P.S. Chauhan. Coord. Chem. Rev., 55, 207 (1984).
- [2] U.N. Tripathi, R. Bohra, G. Srivastava, R.C. Mehrotra. Polyhedron, 11, 1187 (1992).
- [3] U.N. Tripathi, G. Srivastava, R.C. Mehrotra. Trans. Met. Chem., 19, 564 (1994).
- [4] T.A. Guiton, C.G. Pantano. Sol-gel processing of sulfide. Plenary lecture at 5th International Workshop on Glasses, Ceramics and Gels, Rio-de-Janerio, Abstract A-2 (1989).
- [5] M. Umemura, M. Konishi, A. Fukushimali, J. Hisaneo, T. Okeimoto. Eur. Pat., EP, 205, 165; *Chem. Abstr.*, 106, 87468n (1987).
- [6] A.A. Pinherton, Y. Meseri, C. Rieder. J. Chem. Soc., Dalton Trans., 85 (1978).
- [7] K.W. Bagnall, D. Brown, D.G. Holah. J. Chem. Soc. A., 1149 (1968).
- [8] D. Brown, D.G. Holah, C.E.F. Rickard. J. Chem. Soc. A, 423 (1970).
- [9] A.A. Pinherton, A.E. Storey, J.M. Zellweger. J. Chem. Soc., Dalton Trans., 1475 (1987).
- [10] T. Imai, M. Nakamura, K. Nagai, Y. Okhi, Y. Suzuki, M. Shimoi, A. Ouchi. Bull. Chem. Soc. Jpn., 59, 2115 (1986).
- [11] M. Ciampolini, N. Nardi. Chem. Soc., Dalton Trans., 2121 (1977).
- [12] D. Patlee, C. Musikas, A. Faure, C. Chachaty. J. Less-Common Met., 122, 295 (1986); Chem. Abstr., 106, 23942 (1987).
- [13] U.N. Tripathi, A. Chaturvedi, M.S. Singh, R.J. Rao. Phosphorus and Sulphur, 122, 167 (1997).
- [14] U.N. Tripathi, M.S. Singh. J. Ind. Chem. Soc., 760, 360 (1999).
- [15] U.N. Tripathi, P.P. Bipin, R. Mirza, A. Chaturvedi. Pol. J. Chem., 73, 1751 (1999).
- [16] U.N. Tripathi, P.P. Bipin, R. Mirza, S. Shukla. J. Coord. Chem., 55(10), 1111 (2002).
- [17] H.P.S. Chauhan, C.P. Bhasin, G. Srivastava, R.C. Mehrotra. Phosphorus, Sulphur, 15, 49 (1983).
- [18] A.I. Vogel. A Textbook of Quantitative Organic Analysis, ELBS and Longman, New York (1973).
- [19] A.I. Vogel. A Textbook of Quantitative Inorganic Analysis, ELBS and Longman, New York (1985).
- [20] D.E.C. Corbridge. Topics in phosphorus chemistry. In *Interscience*, M. Grayson, E.J. Griffith (Eds), Vol. 6, New York (1969).
- [21] L.C. Thomas. Interpretation of the Infra-red Spectra of Organophosphorus Compounds, Heyden, London (1974).
- [22] L.D. Quin The Heterocyclic Chemistry of Phosphorus, Wiley-Interscience, New York (1981).
- [23] K. Nakamoto. Infra-red Spectra of Inorganic and Coordination Compounds. Wiley-Interscience, New York (1970).
- [24] C. Glidewell. Inorg. Chem. Acta, 25, 159 (1977).
- [25] B.P.S. Chauhan, G. Srivastava, R.C. Mehrotra. Synth. React. Inorg. Met.- Org. Chem., 13, 1050 (1982).